
Brute Force Defense

Jackson McCullough

1 Introduction

This was a simple brute force simulation using multiple tools to launch, log, and
prevent future brute force attacks.

2 Setup

2.1 Kali(attacker)

The software Hydra was used to launch the brute force attack. The target was
an Ubuntu virtual machine that had OpenSSH enabled. The attacker is brute
forcing via SSH. A word list was used to attack the SSH and could therefore be
posed as a dictionary attack. No scripts or anything will be injected into the
Ubuntu machine, only password cracking.

2.2 Ubuntu(target)

First step was to install and enable OpenSSH, to widen some attack surface
and give an attack vector for the attacker.
Next, Splunk Forwarder was installed on the ubuntu vm for logging and
forwarding purposes. We added monitors to send data to a different computer
that would be collecting the data on port 9997. Monitors were created to log
the auth logs, so failed/successful password attempts, and logs from fail2ban.
Fail2ban is the software being used for further prevention of a brute force attack
once the initial attack is successful, since fail2ban will be used for recognizing
patterns in logs and blocking certain IP’s from logging in an x amount of times,
essentially an IPS.

2.3 Windows(Splunk)

Nothing changed much on the windows machine. Splunk Enterprise was in-
stalled, configured to receive data on port 9997, and adjusted the firewall of the
machine to actually be able to ”talk to” the Ubuntu machine and accept the
log data.

1

3 Attack

The attack was launched from kali. The first step was creating the word list,
that was just random characters or dictionary words that were personally gen-
erated, then the correct password lingering somewhere in the document. Next
was launching the attack, which is a simple command from hydra:
hydra -l ubuntu -P /home/lxvert/Desktop/passwords.txt -f ssh://[Ubuntu-IP-Address]

This launched the brute-force attack with the word list of about 300 words,
and the filter ”-f” just tells hydra to stop after the valid login credentials have
been found(the correct password was in the word list).

4 Defense

There was no defense initially, even the password to ssh into this account was
just ”mysafepassword”, with no multi-factor authentication or other type of au-
thentication besides the weak password.
After the attack, visualizations were created in Splunk to help analyze the logs
in a clear manner. There were also open-source datasets added that simulate a
brute-force attack to get attacks from multiple places, and significantly higher
volume.

The first search query created was to find the the number of login attempts
in congruence to the time(per hour). Displayed by a line chart, we could see the
number of login attempts and the times they took place, along with the most
traffic:

The query created to create this chart was:
index=main | eval time = strptime(timestamp, "%a %b %d %H:%M:%S %Y")

| timechart span=1h count as Attempts

The next one created was to find the total login attempts based on the IP,
to help gather information of particular IP’s that may need to be blocked, or
a certain subnet that needs to be blocked. The top ten IP addressed were dis-
played.

2

The query used to find and create this graph was:
index=main | stats count as Attempts by foreign ip | sort - Attempts

| head 10

The final filter applied was finding the location of the logins, and the accounts
that were trying to be accessed. If a search is created to find these, we could
ban certain locations from logging in if it is completely useless for anyone to
have access there. However, IP spoofing or VPN’s could possibly counter this.

The query used was:
index=main | eval time = strptime(timestamp, "%a %b %d %H:%M:%S %Y")

| iplocation foreign ip | geostats count by username latfield=lat longfield=lon

4.1 Fail2ban

A pretty rudimentary configuration was made in fail2ban on the target machine
in order to create a more strict login entry for ssh, as well as banning specific
IP attempts. The jail.local file was configured to allow less retries and apply
certain ban times. The purpose behind this is to allow login attempts, but if
there is an odd amount of failures, a ban time would allow the security oper-
ations center to have time to recognize suspicious login attempts, giving them
time to ban or take any steps needed. The following configurations were made
for default login and ssh attempts.
Default Configurations:
bantime = 600

maxretry = 3

ignoreip = [Ubuntu IP address]

banaction = iptables-multiport

SSH specific configurations
enabled = true

3

port = ssh

filter = sshd

logpath = /var/log/auth.log

maxretry = 3

To ban certain IP’s, it needs to be directly from the command-line interpreter,
rather than set into jail.local.
There were multiple IP addresses that may have needed to be banned, so to do
so the input would be:
sudo fail2ban-client set sshd banip [input IP Address]

5 Recommendations and Closing

The fail2ban software worked well with blocking, and the splunk logging helped
exponentially with knowing specifically what to block or filter. A great upgrade
or extra step of security would be introducing MFA.
The purpose of this was to apply tools and knowledge to a real-world scenario of
a brute-force attack, and apply defensive measures and monitoring using splunk
and fail2ban.

4

